
ADDIS-spending: Adaptive discarding algorithm for online FWER control
ADDIS_spending.RdImplements the ADDIS algorithm for online FWER control, where ADDIS stands for an ADaptive algorithm that DIScards conservative nulls, as presented by Tian and Ramdas (2021). The procedure compensates for the power loss of Alpha-spending, by including both adaptivity in the fraction of null hypotheses and the conservativeness of nulls.
Usage
ADDIS_spending(
d,
alpha = 0.05,
gammai,
lambda = 0.25,
tau = 0.5,
dep = FALSE,
display_progress = FALSE
)Arguments
- d
Either a vector of p-values, or a dataframe with three columns: an identifier (`id'), p-value (`pval'), and lags (`lags').
- alpha
Overall significance level of the procedure, the default is 0.05.
- gammai
Optional vector of \(\gamma_i\). A default is provided with \(\gamma_j\) proportional to \(1/j^(1.6)\).
- lambda
Optional parameter that sets the threshold for `candidate' hypotheses. Must be between 0 and 1, defaults to 0.25.
- tau
Optional threshold for hypotheses to be selected for testing. Must be between 0 and 1, defaults to 0.5.
- dep
Logical. If
TRUEruns the version for locally dependent p-values- display_progress
Logical. If
TRUEprints out a progress bar for the algorithm runtime.
Value
- out
A dataframe with the original p-values
pval, the adjusted testing levels \(\alpha_i\) and the indicator function of discoveriesR. Hypothesis \(i\) is rejected if the \(i\)-th p-value is less than or equal to \(\alpha_i\), in which caseR[i] = 1(otherwiseR[i] = 0).
Details
The function takes as its input either a vector of p-values, or a dataframe with three columns: an identifier (`id'), p-value (`pval'), and lags, if the dependent version is specified (see below). Given an overall significance level \(\alpha\), ADDIS depends on constants \(\lambda\) and \(\tau\), where \(\lambda < \tau\). Here \(\tau \in (0,1)\) represents the threshold for a hypothesis to be selected for testing: p-values greater than \(\tau\) are implicitly `discarded' by the procedure, while \(\lambda \in (0,1)\) sets the threshold for a p-value to be a candidate for rejection: ADDIS-spending will never reject a p-value larger than \(\lambda\). The algorithms also require a sequence of non-negative non-increasing numbers \(\gamma_i\) that sum to 1.
The ADDIS-spending procedure provably controls the FWER in the strong sense for independent p-values. Note that the procedure also controls the generalised familywise error rate (k-FWER) for \(k > 1\) if \(\alpha\) is replaced by min(\(1, k\alpha\)).
Tian and Ramdas (2021) also presented a version for handling local
dependence. More precisely, for any \(t>0\) we allow the p-value \(p_t\)
to have arbitrary dependence on the previous \(L_t\) p-values. The fixed
sequence \(L_t\) is referred to as `lags', and is given as the input
lags for this version of the ADDIS-spending algorithm.
Further details of the ADDIS-spending algorithms can be found in Tian and Ramdas (2021).
References
Tian, J. and Ramdas, A. (2021). Online control of the familywise error rate. Statistical Methods for Medical Research 30(4):976–993.
See also
ADDIS provides online control of the FDR.
Examples
sample.df <- data.frame(
id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
0.69274, 0.30443, 0.00136, 0.72342, 0.54757),
lags = rep(1,15))
ADDIS_spending(sample.df) #independent
#> pval alphai R
#> 1 2.9000e-08 0.0054686271 1
#> 2 6.7430e-02 0.0054686271 0
#> 3 1.5140e-02 0.0054686271 0
#> 4 8.1740e-02 0.0054686271 0
#> 5 1.7100e-03 0.0054686271 1
#> 6 3.6000e-05 0.0054686271 1
#> 7 7.9149e-01 0.0054686271 0
#> 8 2.7201e-01 0.0054686271 0
#> 9 2.8295e-01 0.0018039742 0
#> 10 7.5900e-08 0.0009429405 1
#> 11 6.9274e-01 0.0009429405 0
#> 12 3.0443e-01 0.0009429405 0
#> 13 1.3600e-03 0.0005950895 0
#> 14 7.2342e-01 0.0005950895 0
#> 15 5.4757e-01 0.0005950895 0
ADDIS_spending(sample.df, dep = TRUE) #Locally dependent
#> pval alphai R
#> 1 2.9000e-08 0.0054686271 1
#> 2 6.7430e-02 0.0018039742 0
#> 3 1.5140e-02 0.0018039742 0
#> 4 8.1740e-02 0.0018039742 0
#> 5 1.7100e-03 0.0018039742 1
#> 6 3.6000e-05 0.0018039742 1
#> 7 7.9149e-01 0.0018039742 0
#> 8 2.7201e-01 0.0018039742 0
#> 9 2.8295e-01 0.0009429405 0
#> 10 7.5900e-08 0.0005950895 1
#> 11 6.9274e-01 0.0005950895 0
#> 12 3.0443e-01 0.0005950895 0
#> 13 1.3600e-03 0.0004164149 0
#> 14 7.2342e-01 0.0004164149 0
#> 15 5.4757e-01 0.0004164149 0